您当前的位置 :非公企业党建 正文

书库:数据独裁

2013年08月09日    中国非公企业党建网

   我们比想象中更容易受到数据的控制——让数据以良莠参半的方式统治我们。  

  大数据大大地威胁到了我们的隐私和自由,这都是大数据带来的新威胁。但是与此同时,它也加剧了一个旧威胁:过于依赖数据,而数据远远没有我们所想的那么可靠。要揭示大数据分析的不可靠性,恐怕没有比罗伯特•麦克纳马拉(Robert McNamara)的例子更贴切的了。

  麦克纳马拉是一个执迷于数据的人。20世纪60年代早期,在越南局势变得紧张的时候,他被任命为美国国防部长。任何事情,只要可以,他都会执意得到数据。他认为,只有运用严谨的统计数据,决策者才能真正理解复杂的事态并做出正确的决定。他眼中的世界就是一堆桀骜不驯的信息的总和,一旦划定、命名、区分和量化之后,就能被人类驯服并加以利用。麦克纳马拉追求真理,而数据恰好能揭示真理。他所掌握的数据中有一份就是“死亡名单”。

  麦克纳马拉对数字的执迷从年轻的时候就开始了,当时他还是哈佛商学院的学生,后来,他以24岁的年纪成为了最年轻的副教授。第二次世界大战期间,他把这种严密的数字意识运用到了工作之中,当时他是五角大楼里被称为“统计控制队”中的一名精英,这个队伍让世界权力的中心人物都开始依靠数据进行决策。在这之前,部队一直很盲目。比方说,它们不知道飞机备用零件的种类、数据和放置位置。1943年制作的综合清单为部队节省了36亿美元。现代战争需要资源的合理分配,他们所做的非常了不起。

  战争结束的时候,他们决定通力合作拯救濒临倒闭的福特汽车公司。福特二世(Henry Ford Ⅱ)绝望地交出了自己的控制权。就像他们投入战争的时候完全不懂军事一样,这一次,他们也不关心如何制作汽车。但是奇妙的是,这群精明小子居然救活了福特公司。

  麦克纳马拉对数据的执迷迅速升温,开始凡事都考虑数据集。工厂经理迅速地生成麦克纳马拉所要求的数字,不管对错。他规定只有在旧车型的车有零件的存货用完之后才能生产新车型,愤怒的生产线经理们一股脑将剩余的零件全部倒进了附近的河里。当前线员工把数据返回的时候,总部的高管们都满意地点了点头,因为规定执行得很到位。但是工厂里盛行一个笑话,是说河面上可以走人了,因为河里有很多1950年或者1951年生产的车型的零件,在河面上走就是在生锈的零件上走。

  麦克纳马拉是典型的20世纪经理人——完全依赖数字而非感情的理智型高管,他可以把他的数控理论运用到任何领域。1960年,他被任命为福特汽车公司的总裁,在位只有几周,他就被肯尼迪总统任命为美国国防部部长。

  随着越南战争升级和美军加派部队,这变成了一场意志之战而非领土之争。美军的策略是逼迫越共走上谈判桌。于是,评判战争进度的方法就是看对方的死亡人数。每天报纸都会公布死亡人数。支持战争的人把这作为战争胜利的标志,反战的人把它作为道德沦丧的证据。死亡人数是代表了一个时代的数据集。

  1977年,一架直升机从西贡的美国大使馆屋顶上撤离了最后一批美国公民。两年之后,一位退休的将军道格拉斯•金纳德(Douglas Kinnard)发表了《战争管理者》(The War Managers)。这是一个关于将军们对越战看法的里程碑式的调查。它揭露了量化的困境。仅仅只有2%的美国将军们认为用死亡人数衡量战争成果是有意义的,而三分之二的人认为大部分情况下数据都被夸大了。一个将军评论称,“那都是假的,完全没有意义”;另一个说道,“公开撒谎”;还有一个将军则认为是像麦克纳马拉这样的人表现出了对数据的极大热忱,导致很多部分一层一层地将数字扩大化了。

  就像福特的员工将零件投入河中一样,下级军官为了达成命令或者升官,会汇报可观的数字给他们的上级,只要那是他们的上级希望听到的数字。麦克纳马拉和他身边的人都依赖并且执迷于数据,他认为只有通过电子表格上有序的行、列、计算和图表才能真正了解战场上发生了什么。他认为掌握了数据,也就进一步接近了真理(上帝)。

  美国军方在越战时对数据的使用、滥用和误用给我们提了一个醒,在由“小数据”时代向大数据时代转变的过程中,我们对信息的一些局限性必须给予高度的重视。数据的质量可能会很差;可能是不客观的;可能存在分析错误或者具有误导性;更糟糕的是,数据可能根本达不到量化它的目的。

  我们比想象中更容易受到数据的统治——让数据以良莠参半的方式统治我们。其威胁就是,我们可能会完全受限于我们的分析结果,即使这个结果理应受到质疑。或者说,我们会形成一种对数据的执迷,因而仅仅为了收集数据而收集数据,或者赋予数据根本无权得到的信任。

  随着越来越多的事物被数据化,决策者和商人所做的第一件事就是得到更多的数据。“我们相信上帝,除了上帝,其他任何人都必须用数据说话。”这是现代经理人的信仰,也回响在硅谷的办公室、工厂和市政厅的的门廊里。善加利用,这是极好的事情,但是一旦出现不合理利用,后果将不堪设想。

  教育似乎在走下坡路?用标准化测试来检验学生的表现和评定对老师或学校的奖惩是不合理的。考试是否能全面展示一个学生的能力?是否能有效检测教学质量?是否能反映出一个有创造力、适应能力强的现代师资队伍所需要的品质?这些都饱受争议,但是,数据不会承认这些问题的存在。

  如何防止恐怖主义?创造一层层的禁飞名单、阻止任何与恐怖主义有关的个人搭乘飞机,这真的有用吗?回答是:值得怀疑。想想那件非常出名的事情,马萨诸塞州参议员特德•肯尼迪(Ted Kennedy)不就因为仅仅与该数据库的一个人名字相同而被诱捕、拘留并且调查了吗?

  与数据为伴的人可以用一句话来概括这些问题,“错误的前提导致错误的结论。”有时候,是因为用来分析的数据质量不佳;但在大部分情况下,是因为我们误用了数据分析结果。大数据要么会让这些问题高频出现,要么会加剧这些问题导致的不良后果。

中国非公企业党建由《非公有制企业党建》杂志出品
微信号:DangJianFeiGQ
以深度新闻、高端观点和个性化服务,为非公领域党建
和党务工作者服务,打造中国非公党建交流、沟通的平台
扫一扫,关注有惊喜!
小菲等你来报道!

来源: 《非公有制企业党建》 作者: 编辑: 章玉娟